- Home
- Companies
- Reveal Surgical
- News
- Made in Quebec: Illuminating hidden ...
Made in Quebec: Illuminating hidden brain cancer cells
It’s a scene that plays out daily in operating rooms around the world: a surgeon removes a malignant brain tumour. But rather than registering the satisfaction of having saved a patient’s life, hanging in the air is an all-too-real statistic; in 99.5% of these operations, unseen cancer cells remain. That hidden cancer will eventually grow and spread, and the operation will have become only a short reprieve for the patient and their family.
Kevin Petrecca, Chief of Neurosurgery Department, McGill University Health CentreWhat’s equally frustrating is that those remaining deadly cells, invisible going into or during surgery, are most often lying agonizingly close to where the removed tumour resided. The indetectable nature of these cells is one reason why survival after diagnosis averages only 15 months for these cancers.
“Ninety percent of the time the failures are exactly where the surgery stopped,” explains Kevin Petrecca, Chief of the Department of Neurosurgery at the McGill University Health Centre, about those elusive cancer cells.
Now, the Montreal-based company that Petrecca helped found is poised to solve the problem of residual brain cancer. Reveal Surgical is taking aim at glioblastomas, the most common and fatal type of malignant brain tumour. The medical device start-up, formerly known as ODS Medical, has developed a probe that can locate normally undetectable cells during surgery, allowing the surgeon to remove both the primary tumour and its microscopic tentacles at the same time. It has also built an artificial-intelligence component into the device, which confirms malignancies with an inventory of catalogued cancer biopsies.
Reveal Surgical’s CEO Christopher Kent says his company’s device increases the surgeon’s visual landscape. Called the Sentry System, it captures telltale signs of cancerous cells. The probe shines a light onto brain tissue, and then notes wavelength shifts. Those shifts reflect the molecular makeup of cancerous tissues, distilling a fingerprint of sorts for different tissue types and molecular signatures of cancer cells. Reveal’s technology classifies these fingerprints, enabling surgeons to know during surgery whether the tissue they are investigating contains invisible cancer or not.
He puts in succinct but no less monumental terms the device’s power to offer surgeons next-level access to tissue-derived data: “We’re giving them the ability to see the unseen.”
The idea for this probe was born and developed in Quebec and, as it goes through various medical and regulatory tests, has put the province at the centre of an increasingly international network of hospitals that will test the device. Preliminary results have been positive, making this a story where an enterprising Quebec company, founded by local researchers working in established higher-education institutions with IP licensing partnerships, is set to provide numerous health care institutions with a tool that has the ability to save and prolong lives.
“This should have an impact on tens of thousands of people each year around the world,” says Kent, who lays out the company’s initial vision: “We wanted to address a pretty pressing problem in neurosurgery, which is that the surgeon’s ability to visualize the tumour ahead of the procedure is really limited by a reliance on MRI, and there’s a lot of cancer that just doesn’t show up. Everybody knew that they were leaving cancer behind, but they had no way of reliably identifying which tissue was containing cancer.”